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Agenda

• Introduction and Background

• The Continuum Model in Two Dimensions

• The Green's Function

• Solution for Beamsteering

• Example Beam Scanning Behavior

• Concluding Remarks

This presentation will begin with a description of the previous published work

contributing to the results reported here. The previously developed one
dimensional continuum model will be generalized to two dimensions and a
Green's function for the resulting differential equation will be obtained as an

eigenfunction expansion. This will be used to obtain dynamic solutions
relevant to the steering of the radiated beam. Finally, some remarks

concerning limitations on the interoscillator phase difference will be provided.
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Introduction

• Concept due to Liao and York [IEEE Trans.

MTT-41, pp. 1810-1815,October 1993].

- Linear array of VCOs.

- Antisymmetric detun/ngofend oscillators.

- Linear aperture phase with variable gradi_L

- Analysis via numerical solution of a system of fwst

order nonlinear differential equations based on Adler's
theory of injection locking.

The fundamental concept of steering phased array beams by appropriately
tuning the end oscillators of a linear array originated with Liao and York in

1993. They suggested that linear phase progressions along the array could be

established if the end oscillators were antisymmetrically demned from the

ensemble frequency. They also verified this experimentally at X-band in an

array in which the coupling was achieved through the electromagnetic

coupling between the radiating elements. Since this was a function of the

element spacing, the d_ign was over constrained.

This analysis of the array took the form of numerical solution of a system of
ftrst order nonlinear differential equations derived using Adler's theory of

injection locking. This made intuitive understanding of the dynamics difficult.
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Introduction (Continued)

• Continuum model by Pogorzelski and York

[II=.F._. AP-S Symposium Digest, pp. 324-

327, July 1997].

- Continuous phase function of continuous variable

indexing oscillators.

- Governed by second order partial differential equation.

- Steady state is analogous to electrostatics.

• Detuning=Omrge

• Phase=Potential

Beginning around 1996, Pogorzelski and York developed a continuum model

of coupled oscillator arrays in which the phase is described by a continuous

function of a continuous variable which, when it takes on integer values,

indexes the oscillators of the array. The behavior of this continuous function is

governed by a second order linear partial differential equation which can be

solved analytically using standard techniques. This greatly enhances insight

into the dynamics of stich arrays and the relationship between the behavior of

the phase and tuning of the oscillators.

In applying this to the beamsteering problem, it was noted that an analogy with

electrostatics is evident in which the phase plays the role of electrostatic

potential and the tuning plays the role of electric charge density. Here again

intuitive understanding is enhanced.
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The M by N Array

-M-I -M -M+I -M+2 p M M+I

X

This diagram schematically represents a (2M+ 1) by (2N+ 1) array of oscillators

coupled to nearest neighbors. This is the array to be analyzed in the following.

The oscillators shown in dashed lines are fititious and their purpose will be
described later in this presentation.
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The Continuum Model

• Begin with Adler's theory applied to the

array.

dt
_-MI=-N

O# = CO,_,t+ _b#

To derive the continuum model of this two dimensional array, we begin with

Adler's description of the injection locking phenomenon. In his theory, the

time derivative of the phase of an injection locked oscillator is related to the

sine of the phase difference between the oscillator signal and the injection
signal. Generalizing this to the two dimensional array of mutually injection

locked oscillators (with general interoscillatorcoupling topology) we arrive at

the system of differential equations shown. We then define the phase, phi, as
shown relative to a reference frequency which can be chosen arbitrarily.
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The Continuum Model (Cont.)

OF,

Then,

dt
_l--I I.B j--|

Using this def'mition of phi the system of equations become that shown here.

Then, assuming that the locking ranges are all the same, that the coupling

phase is zero, and that the phase differences between adjacent oscillators is

small, we can linearize the system as shown. Then, the quantity in the Square

brackets can be identified as the finite difference approximation to the

Laplacian operator.
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The Continuum Model (Cont.)

which leads to,

fDtu_ --fOre/

where,,

1: = A(O_ t

Thus, defining a continuous phi function and continuous variables x and y
indexing the oscillators, we arrive at the partial differential equation for phi

shown. This is the diffusion equation. Tau is time measured in inverse

locking ranges.

8



Boundary Conditions

• Employ an artifice proposed in the one
dimensional case.

• Add fictitious oscillators on the periphery.

- DynamieaUy tuned to reduce injection to zero.

- Results in a Neurnann condition on the

boundary.

Having derived the differential equation governing the behavior of phi, we

must determine the boundary conditions at the perimeter of the array in order
to uniquely define the solution. For this we use an artifice in which fictitious

oscillators are added on the periphery of the array and these are dynamically

tuned in such a manner as to render the phase of each fictitious oscillator equal

to its nearest real neighbor in the array. This effectively emulates the absence

of the fictitious oscillator because when the phases are equal the injection

effect on the dynamics is zero by Adler's theory. Now, the equality of the two
phases implies a zero value for the derivative of phase normal to the array

edge; i.e., a Neumann boundary condition.
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The M by N Array

-M-I -M -M+I -M+2 p M M+I

I0

This diagram illustrates the fictitious oscillator arrangement used in the
bounda_ condition derivation.
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The Ensemble Frequency

Averaging over the array,

aa# a2_ .a_> < a_.. >-_<_->+<_-> = _,

_o_ dx

The partial differential equation can now be used to determine the frequency at

which the ensemble of mutually injection locked oscillators will oscillate

without external injection. This is done by averaging the equation over the

area of the array. The result indicates that the ensemble frequency will be

equal to the average of the tuning (free running) frequencies.
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The Green's Function

_ 0_,,,,,, -0},_, = -Cu(x YS(x - x')5(y - y')
AO}_

22 C
3g._g

_--p-+_--sg=- 8(x-x')s(y- y')

12

The equation will be solved by means of a Green's function, g; that is, a
solution for the case of a delta function source term as shown. Performing a

Laplace transformation with respect to the time variable results in the spatial

equation shown.
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The Eigenfunctions

= 1 eosh s.xcosh s.y:_ _,...(:..)(,/z-.)

: _.h(:_)_nh(:y)
f**'" - N**._

' co,h(,/Z-.x)_,.h(_,)f-."-_v.__
1 I I--- X I n---. x
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The Green's function can be expressed as a sum of eigenfunctions of the

differential operator in the spatial equation. The eigenfunctions come in four

types according to their even or odd symmetry with respect to the spatial
variables.
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The Eigenvalues

s_ _, 2a+l s. _,2a+lJ

=X 2n_ _2
s. k2b+U
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Applying Neumann boundary conditions determines the eigenvalues.
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Normalization

N.... = ½_/(2a + D(2b+ D_.t.

Noo_ = l_f(2a ÷ IX2b÷ 1)

2; mr0

_" = I; re;e0

iJ

It will be convenient to normalize the eigenfunctions so that the integral of
their absolute square over the area of the array is unity. The necessary
normalization constants are shown here.
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Normalized Eigenfunctions

_/Oa + IX:_ + l)t.t.

f'_=q(2a+IX_+l) k' _.a"_ ') k _+1 )

_ l __/_._1_,f(U+l_

1 . ((2t + l)_'l___f2._v_
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Using the preceding results, we obtain the above set of normalized

eigenfunctions required for the expansion of the Green's function.
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Back to the Green's Function

#<_,y,x',/,s)=-c[G.+c..+c.+c.]

,.,.., v_A,(2a + IX2b + IXs. + s. - s)

o ,_._._....,,.e,_"_'_,._/_,._-_),._,_
....... tz,_,r._ (2a + IXlb+lXs,, + st- #)

_,.., v..(2a + IX2b + IX#. + st - a)

O.(x,y:.z ,y ;s)-
,,.._l.d z,(2a + lX2b + IXs, + $,, - #)

17

Using Sturm-LiouviUetheory we can immediately writethe Green'sfunction

in terms of the eigenfunctions. Each term of the expansion has one simple

pole at the eigenvalue rendering the inverse Laplace transform a trivial matter

of summing the residues at these poles. There is, however, a double pole at the
origin which yields a term linear in time.
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The Solution for Phase

18

This is the inverse Laplace transform giving the dynamic behavior of the phase

function when one oscillator is step detuned by one locking range at time zero.
A remaining issue is that, because the source is a delta function instead of a

pulse over on unit cell of the array, this series diverges at the detuned
oscillator.
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Pulse Source Representation

*(x.rJ:7"_) t_ * IX_* 0'0)

• _ mo=ao.b,s.m_ '_'"' "'"
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The divergence arising from the use of the Dirae delta representation can be

circumvented by using a pulse source. The corresponding solution can be

obtained by integrating the previous solution over one unit cell. The result is

shown here and is tantamount to multiplication by appropriate sinc functions.

This series converges everywhere in the array.
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This is a graphical representation of the solution shown in the previous chart
excluding the term linear in time. Four times are shown, the first near zero of

time, the second part way into the transient, the third near convergence, and the
fourth at infinitetime. The excluded linear time term arises because the

ensemble frequency changes in concert with the change in the average of the
tuning frequencies of the oscillators resulting from the detuning of one of
them.
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The Array, Time Constants

I
_*- x' L(2_+ l)' +(2t,+o'J

General

'_'-,,'L(2_+0' +_+lf.i

On y axis

'_o I 1" (2a+t)'(_+ D' ]

On x axis Center
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The solution permits recognition of the slowest time constant which is

representative of the response time (bandwidth) of the whole array. Four cases

are possible resulting in slightly different results. However, in general

time constants are roughly proportional to the number of elements in the array.
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Beamsteering

- % +[o_(_'-_,)+ta_(_'-_)

+ta.8(y'-d,)+%8 (y.- a,)].(_)

Beamsteering requires planar phase distributions over the array area. This can

be obtained by detuning the perimeter elements according to the prescription
shown here. Note that only four voltages are required since all of the

oscillators along a given array edge are detuning by equal amounts.
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The Dynamic Solution
d'

._._ 4_'-'_!-'-".-[_.-,,_,_._.t.,
/_j t r

The solution resulting from the beamsteering detuning prescription can be
obtain by integrating the source function multiplied by the Green's function
obtained previously. The result is shown here.
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The Steady State Solution

The steady state solution can be derived from the dynamic solution by noting

that, at infinite time, the summations can be performed in closed form

resulting in quadratic functions. The form above clearly shows that the

symmetric part of the detuning gives quadratic phase dependence while the

antisymn_tric part yields the linear dependence desired for beamsteering.
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Parameters ,,for Beamsteering

which_aas,

O(x,y;x)

C ! --'----C 2 ----"--C

a_= -d_ =-a
f_,, =-_,_ =-f_

_, -_, =-_

By selecting the parameters for antisy_c detuning as shown, we obtain
the desired linear phase.
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These graphs show the time evolution of the phase when detuning appropriate
to beam.steering is applied.
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Radiating Aperture

h

f2, = 2a: _sine o cOS_o

h

£2y = 2_ _ sin Oo sin _o

2"/

If we consider a radiating aperture composed of elen_nts spaced by distance h
in a two dimensional square lattice, the tuning necessary to steer the beam to
desired polar angles is given by the above formulae.
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Thisgraph shows thebeam peak (dots)and thethreedB contour(closed

curves)asa functionoftimeduringthebeamsteeringtransientresultingwhen
a stepsteeringvoltagedesignedtosteerthebeam thirtydegreesoffnormal is
appliedatt/mezero.
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During the transient period, the aperture phase is nonplanar. This results in a

temporary reduction in gain due to phase aberration. This graph shows this

gain reduction as a function of time compared with the projected aperture loss

to be expected for each beam position. These curves were obtained by pattern
integration.
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Thisgraphshows theresultoffoursetsofsteeringvoltagesappliedinrapid

succession.Note thattheaberrationeffectsseem tobe greaterwhen steering
from one offaxispositiontoanotherthanwhen steeringtoorfrom normal.
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Concluding Remarks

• Inter-oscillator phase difference

- Limited to 90 degrees.

- Limit canbe mitigated by:

• Reducing the element spacing.

• Adding oscillators between the radiating ones.

• Radiating at a harmonic of the coupling frequency.

• This techniques appears to hold promise for

simplification of the _amsteering control
system.

31

One limitation of the present system is that the phase difference between

adjacent oscillators is limited to 90 degrees to maintain lock. (The validity of
the linearized theory actually requires that the phase difference be small

compared to 90 degrees.) This would appear to limit the scan of a radiating
aperture with half wavelength element spacing to 30 degrees off axis.

However, this can be mitigated in several ways. One can reduce the spacing

between the elements, one can radiate only from every second or every third

oscillator, or one can radiate at a harmonic of the coupling frequency.

Overall, this appear to be an interesting technique for beamsteedng which

results in considerable simplification of the steering electronics in that it only
requires four analog voltages to achieve steering in two dimensions.
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